Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.093
Filtrar
1.
Am Nat ; 202(4): 458-470, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792914

RESUMO

AbstractAcquired photosynthesis transforms genotypically heterotrophic lineages into autotrophs. Transient acquisitions of eukaryotic chloroplasts may provide key evolutionary insight into the endosymbiosis process-the hypothesized mechanism by which eukaryotic cells obtained new functions via organelle retention. Here, we use an eco-evolutionary model to study the environmental conditions under which chloroplast retention is evolutionarily favorable. We focus on kleptoplastidic lineages-which steal functional chloroplasts from their prey-as hypothetical evolutionary intermediates. Our adaptive dynamics analysis reveals a spectrum of evolutionarily stable strategies ranging from phagotrophy to phototrophy to obligate kleptoplasty. Our model suggests that a low-light niche and weak (or absent) trade-offs between chloroplast retention and overall digestive ability favor the evolution of phototrophy. In contrast, when consumers experience strong trade-offs, obligate kleptoplasty emerges as an evolutionary end point. Therefore, the preevolved trade-offs that underlie an evolving lineage's physiology will likely constrain its evolutionary trajectory.


Assuntos
Eucariotos , Processos Fototróficos , Processos Fototróficos/fisiologia , Eucariotos/fisiologia , Fotossíntese , Cloroplastos/metabolismo , Processos Heterotróficos , Evolução Biológica
2.
J Phycol ; 59(4): 785-790, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37379435

RESUMO

Many phytoplankton taxa function on multiple trophic levels by combining photosynthesis and ingestion of bacteria, termed mixotrophy. Despite the recognition of mixotrophy as a universal functional trait, we have yet to fully resolve how environmental conditions influence community grazing rates in situ. A microcosm study was used to assess bacterivory by mixotrophic nanoflagellates following nutrient enrichment and light attenuation in a temperate lake. We found contrasting results based on assessment of mixotroph abundance or bacterivory. Despite an interactive effect of nutrient enrichment and light attenuation on mixotroph abundance, significant differences within light treatments were observed only after enrichment with P or N + P. The greatest abundance of mixotrophs across treatments occurred under co-nutrient enrichment with full exposure to irradiance. However, bacterivory by mixotrophic nanoflagellates was greatest under shaded conditions after either N or P enrichment. We suggest that PAR availability dampened the stimulatory effect of nutrient limitation, and bacterivory supplemented a suboptimal photosynthetic environment. In a saturating light regime, the mixotrophic community was less driven to ingest bacteria because photosynthesis was able to satisfy energetic demands. These findings quantify community bacterivory in response to environmental drivers that may characterize future ecosystem conditions and highlight the importance of considering grazing rates in conjunction with abundance of mixotrophic protists.


Assuntos
Ecossistema , Fitoplâncton , Fitoplâncton/fisiologia , Eucariotos/fisiologia , Fotossíntese , Nutrientes
3.
J Eukaryot Microbiol ; 70(4): e12972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36847544

RESUMO

Protist plankton are major members of open-water marine food webs. Traditionally divided between phototrophic phytoplankton and phagotrophic zooplankton, recent research shows many actually combine phototrophy and phagotrophy in the one cell; these protists are the "mixoplankton." Under the mixoplankton paradigm, "phytoplankton" are incapable of phagotrophy (diatoms being exemplars), while "zooplankton" are incapable of phototrophy. This revision restructures marine food webs, from regional to global levels. Here, we present the first comprehensive database of marine mixoplankton, bringing together extant knowledge of the identity, allometry, physiology, and trophic interactivity of these organisms. This mixoplankton database (MDB) will aid researchers that confront difficulties in characterizing life traits of protist plankton, and it will benefit modelers needing to better appreciate ecology of these organisms with their complex functional and allometric predator-prey interactions. The MDB also identifies knowledge gaps, including the need to better understand, for different mixoplankton functional types, sources of nutrition (use of nitrate, prey types, and nutritional states), and to obtain vital rates (e.g. growth, photosynthesis, ingestion, factors affecting photo' vs. phago' -trophy). It is now possible to revisit and re-classify protistan "phytoplankton" and "zooplankton" in extant databases of plankton life forms so as to clarify their roles in marine ecosystems.


Assuntos
Ecossistema , Plâncton , Animais , Plâncton/fisiologia , Eucariotos/fisiologia , Fitoplâncton , Zooplâncton/fisiologia , Cadeia Alimentar , Oceanos e Mares
4.
Proc Biol Sci ; 290(1991): 20222021, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695036

RESUMO

A large fraction of marine primary production is performed by diverse small protists, and many of these phytoplankton are phagotrophic mixotrophs that vary widely in their capacity to consume bacterial prey. Prior analyses suggest that mixotrophic protists as a group vary in importance across ocean environments, but the mechanisms leading to broad functional diversity among mixotrophs, and the biogeochemical consequences of this, are less clear. Here we use isolates from seven major taxa to demonstrate a tradeoff between phototrophic performance (growth in the absence of prey) and phagotrophic performance (clearance rate when consuming Prochlorococcus). We then show that trophic strategy along the autotrophy-mixotrophy spectrum correlates strongly with global niche differences, across depths and across gradients of stratification and chlorophyll a. A model of competition shows that community shifts can be explained by greater fitness of faster-grazing mixotrophs when nutrients are scarce and light is plentiful. Our results illustrate how basic physiological constraints and principles of resource competition can organize complexity in the surface ocean ecosystem.


Assuntos
Ecossistema , Eucariotos , Eucariotos/fisiologia , Fitoplâncton , Clorofila A , Oceanos e Mares
5.
BMC Ecol Evol ; 22(1): 136, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401160

RESUMO

BACKGROUND: Climate change is expected to lead to warming in ocean surface temperatures which will have unequal effects on the rates of photosynthesis and heterotrophy. As a result of this changing metabolic landscape, directional phenotypic evolution will occur, with implications that cascade up to the ecosystem level. While mixotrophic phytoplankton, organisms that combine photosynthesis and heterotrophy to meet their energetic and nutritional needs, are expected to become more heterotrophic with warmer temperatures due to heterotrophy increasing at a faster rate than photosynthesis, it is unclear how evolution will influence how these organisms respond to warmer temperatures. In this study, we used adaptive dynamics to model the consequences of temperature-mediated increases in metabolic rates for the evolution of mixotrophic phytoplankton, focusing specifically on phagotrophic mixotrophs. RESULTS: We find that mixotrophs tend to evolve to become more reliant on phagotrophy as temperatures rise, leading to reduced prey abundance through higher grazing rates. However, if prey abundance becomes too low, evolution favors greater reliance on photosynthesis. These responses depend upon the trade-off that mixotrophs experience between investing in photosynthesis and phagotrophy. Mixotrophs with a convex trade-off maintain mixotrophy over the greatest range of temperatures; evolution in these "generalist" mixotrophs was found to exacerbate carbon cycle impacts, with evolving mixotrophs exhibiting increased sensitivity to rising temperature. CONCLUSIONS: Our results show that mixotrophs may respond more strongly to climate change than predicted by phenotypic plasticity alone due to evolutionary shifts in metabolic investment. However, the type of metabolic trade-off experienced by mixotrophs as well as ecological feedback on prey abundance may ultimately limit the extent of evolutionary change along the heterotrophy-phototrophy spectrum.


Assuntos
Ecossistema , Fitoplâncton , Temperatura , Eucariotos/fisiologia , Oceanos e Mares
6.
Curr Biol ; 32(21): 4607-4619.e7, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36126656

RESUMO

Over the past decade, molecular phylogenetics has reshaped our understanding of the fungal tree of life by unraveling a hitherto elusive diversity of the protistan relatives of Fungi. Aphelida constitutes one of these novel deep branches that precede the emergence of osmotrophic fungal lifestyle and hold particular significance as the pathogens of algae. Here, we obtain and analyze the genomes of aphelid species Amoeboaphelidium protococcarum and Amoeboaphelidium occidentale. Genomic data unmask the vast divergence between these species, hidden behind their morphological similarity, and reveal hybrid genomes with a complex evolutionary history in two strains of A. protococcarum. We confirm the proposed sister relationship between Aphelida and Fungi using phylogenomic analysis and chart the reduction of characteristic proteins involved in phagocytic activity in the evolution of Holomycota. Annotation of aphelid genomes demonstrates the retention of actin nucleation-promoting complexes associated with phagocytosis and amoeboid motility and also reveals a conspicuous expansion of receptor-like protein kinases, uncharacteristic of fungal lineages. We find that aphelids possess multiple carbohydrate-processing enzymes that are involved in fungal cell wall synthesis but do not display rich complements of algal cell-wall-processing enzymes, suggesting an independent origin of fungal plant-degrading capabilities. Aphelid genomes show that the emergence of Fungi from phagotrophic ancestors relied on a common cell wall synthetic machinery but required a different set of proteins for digestion and interaction with the environment.


Assuntos
Eucariotos , Genômica , Eucariotos/fisiologia , Filogenia , Plantas/genética , Fungos/genética , Fungos/metabolismo , Genoma Fúngico , Evolução Molecular
7.
Sci Total Environ ; 828: 154405, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276178

RESUMO

Pedogenesis determines soil physicochemical properties and many biodiversity facets, including belowground microbial bacteria and fungi. At the local scale, top-down predation by microbial protists regulates the soil microbiome, while the microbiome also affects protistan communities. However, it remains unknown how pedogenesis affects protistan communities and the potential protist-microbiome predator-prey relationships. With 435 soil samples representing different stages of pedogenesis ranging in soil age from centuries to millennia, we examined the influence of pedogenesis on the main protistan groups, and the interrelationships between protistan predators and microbial prey biomass. We revealed an enrichment in the diversity of total protists across pedogenesis and increasing richness of phototrophic protists in the medium compared with the early stages of pedogenesis. The richness of predatory protists accumulated throughout pedogenesis, which was more strongly determined by microbial biomass than environmental factors. Predator-prey associations were stronger in the young and the medium soils than in the older soils, likely because prey biomass accumulated in the latter and might be no longer limit predators. Together, our work provides evidence that pedogenesis shapes predatory protists differently than their prey, leading to shifts in predator-prey relationships. This knowledge is critical to better understand how soil food webs develop across soil development which might lead to changes in ecosystem functions.


Assuntos
Microbiota , Solo , Animais , Biodiversidade , Eucariotos/fisiologia , Cadeia Alimentar , Comportamento Predatório
8.
Bioessays ; 44(5): e2100258, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35318703

RESUMO

Mitochondria have been fundamental to the eco-physiological success of eukaryotes since the last eukaryotic common ancestor (LECA). They contribute essential functions to eukaryotic cells, above and beyond classical respiration. Mitochondria interact with, and complement, metabolic pathways occurring in other organelles, notably diversifying the chloroplast metabolism of photosynthetic organisms. Here, we integrate existing literature to investigate how mitochondrial metabolism varies across the landscape of eukaryotic evolution. We illustrate the mitochondrial remodelling and proteomic changes undergone in conjunction with major evolutionary transitions. We explore how the mitochondrial complexity of the LECA has been remodelled in specific groups to support subsequent evolutionary transitions, such as the acquisition of chloroplasts in photosynthetic species and the emergence of multicellularity. We highlight the versatile and crucial roles played by mitochondria during eukaryotic evolution, extending from its huge contribution to the development of the LECA itself to the dynamic evolution of individual eukaryote groups, reflecting both their current ecologies and evolutionary histories.


Assuntos
Células Eucarióticas , Proteômica , Evolução Biológica , Eucariotos/fisiologia , Células Eucarióticas/metabolismo , Mitocôndrias/metabolismo , Organelas/metabolismo , Filogenia
9.
Biochem Soc Trans ; 50(1): 609-620, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35225336

RESUMO

Photosymbioses, intimate interactions between photosynthetic algal symbionts and heterotrophic hosts, are well known in invertebrate and protist systems. Vertebrate animals are an exception where photosynthetic microorganisms are not often considered part of the normal vertebrate microbiome, with a few exceptions in amphibian eggs. Here, we review the breadth of vertebrate diversity and explore where algae have taken hold in vertebrate fur, on vertebrate surfaces, in vertebrate tissues, and within vertebrate cells. We find that algae have myriad partnerships with vertebrate animals, from fishes to mammals, and that those symbioses range from apparent mutualisms to commensalisms to parasitisms. The exception in vertebrates, compared with other groups of eukaryotes, is that intracellular mutualisms and commensalisms with algae or other microbes are notably rare. We currently have no clear cell-in-cell (endosymbiotic) examples of a trophic mutualism in any vertebrate, while there is a broad diversity of such interactions in invertebrate animals and protists. This functional divergence in vertebrate symbioses may be related to vertebrate physiology or a byproduct of our adaptive immune system. Overall, we see that diverse algae are part of the vertebrate microbiome, broadly, with numerous symbiotic interactions occurring across all vertebrate and many algal clades. These interactions are being studied for their ecological, organismal, and cellular implications. This synthesis of vertebrate-algal associations may prove useful for the development of novel therapeutics: pairing algae with medical devices, tissue cultures, and artificial ecto- and endosymbioses.


Assuntos
Plantas , Simbiose , Animais , Eucariotos/fisiologia , Mamíferos , Fotossíntese , Simbiose/fisiologia , Vertebrados
10.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35145022

RESUMO

Intricate networks of single-celled eukaryotes (protists) dominate carbon flow in the ocean. Their growth, demise, and interactions with other microorganisms drive the fluxes of biogeochemical elements through marine ecosystems. Mixotrophic protists are capable of both photosynthesis and ingestion of prey and are dominant components of open-ocean planktonic communities. Yet the role of mixotrophs in elemental cycling is obscured by their capacity to act as primary producers or heterotrophic consumers depending on factors that remain largely uncharacterized. Here, we develop and apply a machine learning model that predicts the in situ trophic mode of aquatic protists based on their patterns of gene expression. This approach leverages a public collection of protist transcriptomes as a training set to identify a subset of gene families whose transcriptional profiles predict trophic mode. We applied our model to nearly 100 metatranscriptomes obtained during two oceanographic cruises in the North Pacific and found community-level and population-specific evidence that abundant open-ocean mixotrophic populations shift their predominant mode of nutrient and carbon acquisition in response to natural gradients in nutrient supply and sea surface temperature. Metatranscriptomic data from ship-board incubation experiments revealed that abundant mixotrophic prymnesiophytes from the oligotrophic North Pacific subtropical gyre rapidly remodeled their transcriptome to enhance photosynthesis when supplied with limiting nutrients. Coupling this approach with experiments designed to reveal the mechanisms driving mixotroph physiology provides an avenue toward understanding the ecology of mixotrophy in the natural environment.


Assuntos
Eucariotos/fisiologia , Cadeia Alimentar , Aprendizado de Máquina , Modelos Biológicos , Plâncton/fisiologia , Eucariotos/genética , Perfilação da Expressão Gênica , Oceanos e Mares , Plâncton/genética
11.
RNA Biol ; 19(1): 117-131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34923906

RESUMO

The universally conserved process of protein biosynthesis is crucial for maintaining cellular homoeostasis and in eukaryotes, mitochondrial translation is essential for aerobic energy production. Mitochondrial ribosomes (mitoribosomes) are highly specialized to synthesize 13 core subunits of the oxidative phosphorylation (OXPHOS) complexes. Although the mitochondrial translation machinery traces its origin from a bacterial ancestor, it has acquired substantial differences within this endosymbiotic environment. The cycle of mitoribosome function proceeds through the conserved canonical steps of initiation, elongation, termination and mitoribosome recycling. However, when mitoribosomes operate in the context of limited translation factors or on aberrant mRNAs, they can become stalled and activation of rescue mechanisms is required. This review summarizes recent advances in the understanding of protein biosynthesis in mitochondria, focusing especially on the mechanistic and physiological details of translation termination, and mitoribosome recycling and rescue.


Assuntos
Mitocôndrias/fisiologia , Ribossomos Mitocondriais/metabolismo , Biossíntese de Proteínas , Animais , Bactérias/genética , Bactérias/metabolismo , Eucariotos/fisiologia , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
12.
Biosystems ; 210: 104562, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34662677

RESUMO

Quantitative modelling of biological systems using Petri net technologies has experienced renaissance in the past couple of decades. The overwhelming majority of these models is deterministic though underlying biological systems are usually at the mesoscopic level and small, rather than large, and employ sparse molecular structure. Sparse biological systems are accompanied by randomness due to low molecular density, intrinsic random nature of phenomena and noise in an experiment. On the other hand, biochemical reactions are inherently uncertain due to imprecision and vagueness of kinetic parameters. Stochastic methods are used to cope with randomness while fuzzy methods are developed to deal with uncertainty of biological systems, but there is lack of common voice among researchers regarding the best choice of modelling approach for a particular biological system. The main issues addressed in this paper are the choice between deterministic, stochastic and fuzzy parameters and aspects; that is, which modelling approach to follow to reach the realistic approximation of an underlying biological system, and how to measure parallels and discrepancies between different quantitative paradigms. To this end, we use Petri nets with hybrid, stochastic and fuzzy parameters to create quantitative model of p16-mediated signalling pathway in higher eukaryotes, perform deterministic, pure stochastic and fuzzy stochastic simulations to predict the behaviour of major molecular regulators of p16-mediated pathway. In the meanwhile, we show how uncertain kinetic parameters can be precisely approximated in terms of α cuts. Then we perform statistical analysis of simulation results to measure similarity between the three modelling approaches. The statistical analysis reveals significant deviations between deterministic, pure stochastic and fuzzy stochastic approaches for most of the biological components. Due to rather small size of underlying biological system, it turns out that fuzzy stochastic approach is the most appropriate for modelling of p16-mediated signalling pathway because it successfully deals with both randomness and uncertainty and produces quantitative results with biological relevance.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/fisiologia , Eucariotos/fisiologia , Modelos Biológicos , Nomogramas , Transdução de Sinais/fisiologia , Animais , Lógica Fuzzy , Genes Supressores de Tumor/fisiologia , Humanos , Processos Estocásticos
13.
Development ; 148(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34338279

RESUMO

The conserved exocyst complex regulates plasma membrane-directed vesicle fusion in eukaryotes. However, its role in stem cell proliferation has not been reported. Germline stem cell (GSC) proliferation in the nematode Caenorhabditis elegans is regulated by conserved Notch signaling. Here, we reveal that the exocyst complex regulates C. elegans GSC proliferation by modulating Notch signaling cell autonomously. Notch membrane density is asymmetrically maintained on GSCs. Knockdown of exocyst complex subunits or of the exocyst-interacting GTPases Rab5 and Rab11 leads to Notch redistribution from the GSC-niche interface to the cytoplasm, suggesting defects in plasma membrane Notch deposition. The anterior polarity (aPar) protein Par6 is required for GSC proliferation, and for maintaining niche-facing membrane levels of Notch and the exocyst complex. The exocyst complex biochemically interacts with the aPar regulator Par5 (14-3-3ζ) and Notch in C. elegans and human cells. Exocyst components are required for Notch plasma membrane localization and signaling in mammalian cells. Our study uncovers a possibly conserved requirement of the exocyst complex in regulating GSC proliferation and in maintaining optimal membrane Notch levels.


Assuntos
Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Membrana Celular/metabolismo , Proliferação de Células/fisiologia , Células Germinativas/metabolismo , Células Germinativas/fisiologia , Nicho de Células-Tronco/fisiologia , Proteínas 14-3-3/metabolismo , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Comunicação Celular/fisiologia , Membrana Celular/fisiologia , Citoplasma/metabolismo , Citoplasma/fisiologia , Eucariotos/metabolismo , Eucariotos/fisiologia , Fusão de Membrana/fisiologia , Morfogênese/fisiologia , Transdução de Sinais/fisiologia
14.
Pol J Microbiol ; 70(2): 215-233, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34349812

RESUMO

The diversity indices of eukaryotic microalgal groups in the Jeonglyeongchi, Waegok, and Wangdeungjae marshes of Mount Jiri, Korea, were measured using Illumina MiSeq and culture-based analyses. Waegok marsh had the highest species richness, with a Chao1 value of 828.00, and the highest levels of species diversity, with Shannon and Simpson index values of 6.36 and 0.94, respectively, while Wangdeungjae marsh had the lowest values at 2.97 and 0.75, respectively. The predominant species in all communities were Phagocata sibirica (Jeonglyeongchi, 68.64%), Aedes albopictus (Waegok, 34.77%), Chaetonotus cf. (Waegok, 24.43%), Eimeria sp. (Wangdeungjae, 26.17%), and Eumonhystera cf. (Wangdeungjae, 22.27%). Relative abundances of the microalgal groups Bacillariophyta (diatoms) and Chlorophyta (green algae) in each marsh were respectively: Jeonglyeongchi 1.38% and 0.49%, Waegok 7.0% and 0.3%, and Wangdeungjae 10.41% and 4.72%. Illumina MiSeq analyses revealed 34 types of diatoms and 13 types of green algae. Only one diatom (Nitzschia dissipata) and five green algae (Neochloris sp., Chlamydomonas sp., Chlorococcum sp., Chlorella vulgaris, Scenedesmus sp.) were identified by a culture-based analysis. Thus, Illumina MiSeq analysis can be considered an efficient tool for analyzing microbial communities. Overall, our results described the environmental factors associated with geographically isolated mountain marshes and their respective microbial and microalgal communities.


Assuntos
Biodiversidade , Eucariotos/classificação , Eucariotos/fisiologia , Microalgas/fisiologia , Microbiota/fisiologia , Áreas Alagadas , Meio Ambiente , República da Coreia
15.
Genes (Basel) ; 12(7)2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34356075

RESUMO

Multicellular eukaryotes are characterized by an expanded extracellular matrix (ECM) with a diversified composition. The ECM is involved in determining tissue texture, screening cells from the outside medium, development, and innate immunity, all of which are essential features in the biology of multicellular eukaryotes. This review addresses the origin and evolution of the ECM, with a focus on multicellular marine algae. We show that in these lineages the expansion of extracellular matrix played a major role in the acquisition of complex multicellularity through its capacity to connect, position, shield, and defend the cells. Multiple innovations were necessary during these evolutionary processes, leading to striking convergences in the structures and functions of the ECMs of algae, animals, and plants.


Assuntos
Evolução Biológica , Eucariotos/fisiologia , Matriz Extracelular/fisiologia , Alga Marinha/fisiologia , Animais , Eucariotos/classificação , Alga Marinha/classificação
16.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34266956

RESUMO

Microbial eukaryotes (or protists) in marine ecosystems are a link between primary producers and all higher trophic levels, and the rate at which heterotrophic protistan grazers consume microbial prey is a key mechanism for carbon transport and recycling in microbial food webs. At deep-sea hydrothermal vents, chemosynthetic bacteria and archaea form the base of a food web that functions in the absence of sunlight, but the role of protistan grazers in these highly productive ecosystems is largely unexplored. Here, we pair grazing experiments with a molecular survey to quantify protistan grazing and to characterize the composition of vent-associated protists in low-temperature diffuse venting fluids from Gorda Ridge in the northeast Pacific Ocean. Results reveal protists exert higher predation pressure at vents compared to the surrounding deep seawater environment and may account for consuming 28 to 62% of the daily stock of prokaryotic biomass within discharging hydrothermal vent fluids. The vent-associated protistan community was more species rich relative to the background deep sea, and patterns in the distribution and co-occurrence of vent microbes provide additional insights into potential predator-prey interactions. Ciliates, followed by dinoflagellates, Syndiniales, rhizaria, and stramenopiles, dominated the vent protistan community and included bacterivorous species, species known to host symbionts, and parasites. Our findings provide an estimate of protistan grazing pressure within hydrothermal vent food webs, highlighting the important role that diverse protistan communities play in deep-sea carbon cycling.


Assuntos
Bactérias/isolamento & purificação , Carbono/metabolismo , Eucariotos/fisiologia , Fontes Hidrotermais/parasitologia , Microbiota , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Ciclo do Carbono , Eucariotos/classificação , Eucariotos/genética , Eucariotos/isolamento & purificação , Fontes Hidrotermais/microbiologia , Oceano Pacífico , Filogenia , Água do Mar/microbiologia , Água do Mar/parasitologia
17.
Eur J Protistol ; 80: 125805, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34090087

RESUMO

Cercozoa and Oomycota contain a huge biodiversity and important pathogens of forest trees and other vegetation. We analyzed air dispersal of these protistan phyla with an air sampler near-ground (~2 m) and in tree crowns (~25 m) of three tree species (oak, linden and ash) in a temperate floodplain forest in March (before leafing) and May (after leaf unfolding) 2019 with a cultivation-independent high-throughput metabarcoding approach. We found a high diversity of Cercozoa and Oomycota in air samples with 122 and 81 OTUs, respectively. Especially oomycetes showed a significant difference in community composition between both sampling dates. Differences in community composition between air samples in tree canopies and close to the ground were however negligible, and also tree species identity did not affect communities in air samples, indicating that the distribution of protistan propagules through the air was not spatially restricted in the forest ecosystem. OTUs of plant pathogens, whose host species did not occur in the forest, demonstrate dispersal of propagules from outside the forest biome. Overall, our results lead to a better understanding of the stochastic processes of air dispersal of protists and protistan pathogens, a prerequisite to understand the mechanisms of their community assembly in forest ecosystems.


Assuntos
Ar , Biodiversidade , Ecossistema , Eucariotos/fisiologia , Ar/análise , Ar/parasitologia , Árvores/parasitologia
18.
Curr Genet ; 67(6): 871-876, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34114051

RESUMO

Multicellularity has evolved numerous times across the tree of life. One of the most fundamental distinctions among multicellular organisms is their developmental mode: whether they stay together during growth and develop clonally, or form a group through the aggregation of free-living cells. The five eukaryotic lineages to independently evolve complex multicellularity (animals, plants, red algae, brown algae, and fungi) all develop clonally. This fact has largely been explained through social evolutionary theory's lens of cooperation and conflict, where cheating within non-clonal groups has the potential to undermine multicellular adaptation. Multicellular organisms that form groups via aggregation could mitigate the costs of cheating by evolving kin recognition systems that prevent the formation of chimeric groups. However, recent work suggests that selection for the ability to aggregate quickly may constrain the evolution of highly specific kin recognition, sowing the seeds for persistent evolutionary conflict. Importantly, other features of aggregative multicellular life cycles may independently act to constrain the evolution of complex multicellularity. All known aggregative multicellular organisms are facultatively multicellular (as opposed to obligately multicellular), allowing unicellular-level adaptation to environmental selection. Because they primarily exist in a unicellular state, it may be difficult for aggregative multicellular organisms to evolve multicellular traits that carry pleiotropic cell-level fitness costs. Thus, even in the absence of social conflict, aggregative multicellular organisms may have limited potential for the evolution of complex multicellularity.


Assuntos
Evolução Biológica , Eucariotos/fisiologia , Evolução Clonal , Eucariotos/citologia
19.
Commun Biol ; 4(1): 619, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031522

RESUMO

Many virus capsids undergo exquisitely choreographed maturation processes in their host cells to produce infectious virions, and these remain poorly understood. As a tool for studying virus maturation, we transiently expressed the capsid protein of the insect virus Nudaurelia capensis omega virus (NωV) in Nicotiana benthamiana and were able to purify both immature procapsids and mature capsids from infiltrated leaves by varying the expression time. Cryo-EM analysis of the plant-produced procapsids and mature capsids to 6.6 Å and 2.7 Å resolution, respectively, reveals that in addition to large scale rigid body motions, internal regions of the subunits are extensively remodelled during maturation, creating the active site required for autocatalytic cleavage and infectivity. The mature particles are biologically active in terms of their ability to lyse membranes and have a structure that is essentially identical to authentic virus. The ability to faithfully recapitulate and visualize a complex maturation process in plants, including the autocatalytic cleavage of the capsid protein, has revealed a ~30 Å translation-rotation of the subunits during maturation as well as conformational rearrangements in the N and C-terminal helical regions of each subunit.


Assuntos
Proteínas do Capsídeo/metabolismo , Eucariotos/fisiologia , Folhas de Planta/virologia , Vírus de RNA/fisiologia , Vírion/fisiologia , Montagem de Vírus , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Quaternária de Proteína
20.
mBio ; 12(3)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947751

RESUMO

In eukaryotes, heme attachment through two thioether bonds to mitochondrial cytochromes c and c1 is catalyzed by either multisubunit cytochrome c maturation system I or holocytochrome c synthetase (HCCS). The former was inherited from the alphaproteobacterial progenitor of mitochondria; the latter is a eukaryotic innovation for which prokaryotic ancestry is not evident. HCCS provides one of a few exemplars of de novo protein innovation in eukaryotes, but structure-function insight of HCCS is limited. Uniquely, euglenozoan protists, which include medically relevant kinetoplastids Trypanosoma and Leishmania parasites, attach heme to mitochondrial c-type cytochromes by a single thioether linkage. Yet the mechanism is unknown, as genes encoding proteins with detectable similarity to any proteins involved in cytochrome c maturation in other taxa are absent. Here, a bioinformatics search for proteins conserved in all hemoprotein-containing kinetoplastids identified kinetoplastid cytochrome c synthetase (KCCS), which we reveal as essential and mitochondrial and catalyzes heme attachment to trypanosome cytochrome c KCCS has no sequence identity to other proteins, apart from a slight resemblance within four short motifs suggesting relatedness to HCCS. Thus, KCCS provides a novel resource for studying eukaryotic cytochrome c maturation, possibly with wider relevance, since mutations in human HCCS leads to disease. Moreover, many examples of mitochondrial biochemistry are different in euglenozoans compared to many other eukaryotes; identification of KCCS thus provides another exemplar of extreme, unusual mitochondrial biochemistry in an evolutionarily divergent group of protists.IMPORTANCE Cytochromes c are essential proteins for respiratory and photosynthetic electron transfer. They are posttranslationally modified by covalent attachment of a heme cofactor. Kinetoplastids include important tropical disease-causing parasites; many aspects of their biology differ from other organisms, including their mammalian or plant hosts. Uniquely, kinetoplastids produce cytochromes c with a type of heme attachment not seen elsewhere in nature and were the only cytochrome c-bearing taxa without evidence of protein machinery to attach heme to the apocytochrome. Using bioinformatics, biochemistry, and molecular genetics, we report how kinetoplastids make their cytochromes c Unexpectedly, they use a highly diverged version of an enzyme used for heme-protein attachment in many eukaryotes. Mutations in the human enzyme lead to genetic disease. Identification of kinetoplastid cytochrome c synthetase, thus, solves an evolutionary unknown, provides a possible target for antiparasite drug development, and an unanticipated resource for studying the mechanistic basis of a human genetic disease.


Assuntos
Citocromos c/genética , Citocromos c/fisiologia , Eucariotos/fisiologia , Biologia Computacional , Leishmania mexicana/genética , Leishmania mexicana/fisiologia , Liases/química , Liases/genética , Liases/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...